Curcumin protects against hepatic ischemia/reperfusion induced injury through inhibiting TLR4/NF-κB pathway

نویسندگان

  • Lu Wang
  • Ning Li
  • Dongdong Lin
  • Yunjin Zang
چکیده

The TLR4/NF-κB pathway had important roles in hepatic ischemia/reperfusion (I/R) injury. In this study, we reported a protective effect of curcumin against hepatic I/R injury via TLR4/NF-κB pathway. Curcumin significantly inhibited cell apoptosis, and decreased levels of LDH and production of TNF-a, IL-1b, and IL-6 in the cell supernatant. In addition, curcumin ameliorated elevated TLR4 and NF-κB caused by hypoxia/reoxygenation stimulation in BRL-3A cells. In vivo assays revealed that curcumin reduce levels of ALT and AST, and reversed TLR4/NF-κB signaling pathway caused by hepatic I/R stimulation in liver tissues. These results suggested that curcumin ameliorates hepatic I/R injury, which may be mediated in part via the TLR4/NF-κB signaling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dexmedetomidine Protects Rat Liver against Ischemia-Reperfusion Injury Partly by the α2A-Adrenoceptor Subtype and the Mechanism Is Associated with the TLR4/NF-κB Pathway

Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling plays a dominant role in the pathogenesis of liver ischemia-reperfusion (IR) injury. Dexmedetomidine (Dex) protects the liver against IR injury via α₂-adrenoceptor activation, but the contribution of TLR4 signaling remains unknown. The authors aimed to examine whether pretreatment with Dex produces hepatic protection and inves...

متن کامل

Combination of apigenin and ischemic postconditioning protects against renal ischemia/reperfusion injury in rat by inhibiting TLR4/NF-κB signaling pathway

Purpose: To investigate the effect and possible mechanism of combination of apigenin and ischemic post conditioning on renal ischemia-reperfusion injury in rats. Materials and methods: Fifty rats were randomly separated into 5 groups: (1) sham-operation groups: a midline laparotomy was performed only; (2) I/R group: rats were underwent 45 min of renal ischemia; (3) apigenin group: rats was subj...

متن کامل

Cardioprotective effect of carvedilol: inhibition of apoptosis in H9c2 cardiomyocytes via the TLR4/NF-κB pathway following ischemia/reperfusion injury

Carvedilol is a non-selective β-blocker used in the treatment of cardiovascular disease, including myocardial ischemia. The aim of the present study was to investigate the molecular mechanisms underlying the effects of carvedilol on simulated ischemia/reperfusion (SI/R)-induced cardiomyocyte apoptosis in vitro. H9c2 cardiomyocytes were incubated with either a vehicle or an ischemic buffer durin...

متن کامل

Protective effects of 2-methoxycinnamaldehyde an active ingredients of Cinnamomum cassia on warm hepatic ischemia reperfusion injury in rat model

Objective(s): Hepatic ischemia/reperfusion injury (IRI) is one of the major causes of hepatic failure during liver transplantation, trauma, and infections. The present study investigated the protective effect of intra-portal administration of 2-methoxycinnamaldehyde (2-MCA) on hepatic IRI in rats. Materials and Methods: Twenty-four rats ...

متن کامل

Anti-inflammatory and antioxidant effects of curcumin on acute lung injury in a rodent model of intestinal ischemia reperfusion by inhibiting the pathway of NF-Kb.

OBJECTIVE To investigate the anti-inflammatory and antioxidant effect of curcumin on lung lesion induced by intestinal ischemia reperfusion injury (IIR). METHODS Rats were divided into four groups: sham, intestinal IIR (IIR), 1 mg/kg of curcumin treatment group (1 mg/kg), and 5 mg/kg of curcumin treatment group (5 mg/kg). Curcumin was given respectively (1 mg/kg and 5 mg/kg) following the abo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017